⏶243
Intern-S1:一个科学多模态基础模型
发表
由
Wenwei Zhang 提交
作者: Lei Bai, Zhongrui Cai, Maosong Cao,
Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen, Pengcheng Chen, Ying Chen, Yongkang Chen, Yu Cheng, Yu Cheng, Pei Chu, Tao Chu, Erfei Cui, Ganqu Cui, Long Cui, Ziyun Cui, Nianchen Deng, Ning Ding, Nanqin Dong, Peijie Dong, Shihan Dou, Sinan Du,
Haodong Duan, Caihua Fan, Ben Gao, Changjiang Gao, Jianfei Gao, Songyang Gao,
Yang Gao, Zhangwei Gao, Jiaye Ge, Qiming Ge, Lixin Gu, Yuzhe Gu, Aijia Guo, Qipeng Guo,
Xu Guo, Conghui He, Junjun He,
Yili Hong, Siyuan Hou, Caiyu Hu, Hanglei Hu, Jucheng Hu,
Ming Hu,
Zhouqi Hua, Haian Huang, Junhao Huang,
Xu Huang, Zixian Huang, Zhe Jiang, Lingkai Kong, Linyang Li, Peiji Li, Pengze Li, Shuaibin Li, Tianbin Li, Wei Li, Yuqiang Li, Dahua Lin, Junyao Lin, Tianyi Lin, Zhishan Lin, Hongwei Liu, Jiangning Liu, Jiyao Liu,
Junnan Liu, Kai Liu, Kaiwen Liu,
Kuikun Liu,
Shichun Liu,
Shudong Liu, Wei Liu,
Xinyao Liu, Yuhong Liu,
Zhan Liu, Yinquan Lu, Haijun Lv, Hongxia Lv, Huijie Lv, Qidang Lv, Ying Lv, Chengqi Lyu, Chenglong Ma, Jianpeng Ma, Ren Ma, Runmin Ma, Runyuan Ma, Xinzhu Ma,
Yichuan Ma,
Zihan Ma, Sixuan Mi, Junzhi Ning, Wenchang Ning, Xinle Pang, Jiahui Peng, Runyu Peng, Yu Qiao, Jiantao Qiu, Xiaoye Qu, Yuan Qu, Yuchen Ren, Fukai Shang, Wenqi Shao,
Junhao Shen, Shuaike Shen, Chunfeng Song, Demin Song, Diping Song, Chenlin Su, Weijie Su,
Weigao Sun, Yu Sun, Qian Tan, Cheng Tang, Huanze Tang, Kexian Tang, Shixiang Tang, Jian Tong,
Aoran Wang, Bin Wang, Dong Wang, Lintao Wang, Rui Wang,
Weiyun Wang, Wenhai Wang, Yi Wang, Ziyi Wang, Ling-I Wu, Wen Wu, Yue Wu, Zijian Wu, Linchen Xiao, Shuhao Xing, Chao Xu, Huihui Xu, Jun Xu, Ruiliang Xu, Wanghan Xu,
GanLin Yang,
Yuming Yang, Haochen Ye, Jin Ye, Shenglong Ye, Jia Yu, Jiashuo Yu, Jing Yu, Fei Yuan, Bo Zhang, Chao Zhang, Chen Zhang, Hongjie Zhang, Jin Zhang, Qiaosheng Zhang, Qiuyinzhe Zhang,
Songyang Zhang, Taolin Zhang, Wenlong Zhang,
Wenwei Zhang, Yechen Zhang, Ziyang Zhang,
Haiteng Zhao, Qian Zhao, Xiangyu Zhao, Xiangyu Zhao, Bowen Zhou, Dongzhan Zhou, Peiheng Zhou, Yuhao Zhou, Yunhua Zhou,
Dongsheng Zhu, Lin Zhu, Yicheng Zou











摘要
近年来,涌现了大量的开源基础模型,在一些备受关注的领域取得了显著进展,其性能已非常接近闭源模型。然而,在高价值但更具挑战性的科学专业领域,要么该领域仍然依赖专家模型,要么通用基础模型在该领域的进展明显滞后于热门领域,远不足以革新科学研究,且在这些科学领域,开源模型与闭源模型之间存在巨大差距。为了缓解这一差距并进一步探索通用人工智能(AGI),我们推出了 Intern-S1,这是一个专门的通才模型,具备理解和推理能力,并能分析多模态科学数据。Intern-S1 是一个多模态混合专家(MoE)模型,拥有 280 亿激活参数和 2410 亿总参数,经过 5T token 的持续预训练,其中包括来自科学领域的 2.5T token 以上。在后训练阶段,Intern-S1 在 InternBootCamp 中经历了离线和在线强化学习(RL),我们在此提出了混合奖励(MoR)以同时对超过 1000 个任务进行 RL 训练。通过算法、数据和训练系统的集成创新,Intern-S1 在在线 RL 训练中取得了顶级性能。在全面的评估基准上,Intern-S1 在通用推理任务上展示了与开源模型竞争的性能,并在科学领域显著优于开源模型,在分子合成规划、反应条件预测、晶体热力学稳定性预测等专业任务上超越了闭源最先进模型。我们的模型可在 https://huggingface.co/internlm/Intern-S1 获取。
评论
arXiv 论文解读 👉 https://arxivexplained.com/papers/intern-s1-a-scientific-multimodal-foundation-model
这是 Intern-S1 的技术报告
模型可在以下网址找到:
https://huggingface.co/internlm/Intern-S1
https://huggingface.co/internlm/Intern-S1-mini