ConfQA: 只有在你自信时才回答

发表
Yin HuangYin Huang 提交
作者: Yin HuangYin Huang, Yifan Ethan Xu, Kai Sun, Vera Yan, Alicia Sun, Haidar Khan, Jimmy Nguyen, Mohammad Kachuee, Zhaojiang Lin, Yue Liu, Aaron Colak, Anuj Kumar, Wen-tau Yih, Xin Luna Dong

摘要

Can we teach Large Language Models (LLMs) to refrain from hallucinating factual statements? In this paper we present a fine-tuning strategy that we call ConfQA, which can reduce hallucination rate from 20-40% to under 5% across multiple factuality benchmarks. The core idea is simple: when the LLM answers a question correctly, it is trained to continue with the answer; otherwise, it is trained to admit "I am unsure". But there are two key factors that make the training highly effective. First, we introduce a dampening prompt "answer only if you are confident" to explicitly guide the behavior, without which hallucination remains high as 15%-25%. Second, we leverage simple factual statements, specifically attribute values from knowledge graphs, to help LLMs calibrate the confidence, resulting in robust generalization across domains and question types. Building on this insight, we propose the Dual Neural Knowledge framework, which seamlessly select between internally parameterized neural knowledge and externally recorded symbolic knowledge based on ConfQA's confidence. The framework enables potential accuracy gains to beyond 95%, while reducing unnecessary external retrievals by over 30%.
查看 arXiv 页面查看 PDF

评论

Yin HuangYin Huang
论文作者
论文提交者

本文展示了关于训练大型语言模型(LLMs)避免虚构事实陈述的全面研究,并提出了双重神经知识框架(Dual Neural Knowledge framework),该框架根据ConfQA的置信度,无缝地在内部参数化神经知识和外部记录的符号知识之间进行选择。

  • 在多个基准测试中,通过提示“只有当您确信时才回答”将幻觉率从20-40%降低到<5%

  • 在不使用该提示的情况下,保持相似的准确性,同时将幻觉率降低多达10%

  • 跨领域、短/长形式答案的高度可迁移性,且不降低通用基准性能

  • 高效且有效的RAG触发策略,具有高准确性增益和较低的延迟增加。