MegaHan97K: 一个包含超过9.7万个类别的超大类汉字识别数据集

发表
Yuyi ZhangYuyi Zhang 提交
作者: Yuyi ZhangYuyi Zhang, ShiYongxin Shi, Peirong Zhang, Yixin Zhao, Zhenhua Yang, Lianwen JinLianwen Jin

摘要

Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.
查看 arXiv 页面查看 PDF

评论

Yuyi ZhangYuyi Zhang
论文作者
论文提交者

作为中文语言和文化的基础,汉字包含极其广泛且不断扩展的类别,最新的中文GB18030-2022标准包含了87,887个类别。准确识别如此庞大数量的汉字,被称为巨类别识别,对文化遗产保护和数字应用提出了艰巨而关键的挑战。尽管光学字符识别(OCR)取得了显著进展,但由于缺乏全面的数据集,巨类别识别仍未被充分探索,现有最大的数据集仅包含16,151个类别。为了弥补这一关键空白,我们引入了MegaHan97K,一个巨类别、大规模数据集,涵盖了前所未有的97,455个汉字类别。我们的工作有三大贡献:(1) MegaHan97K是第一个完全支持最新GB18030-2022标准的数据集,提供的类别数量至少是现有数据集的六倍;(2) 它通过其三个不同子集(手写、历史和合成子集)为所有类别提供平衡样本,有效解决了长尾分布问题;(3) 全面的基准实验揭示了巨类别场景中的新挑战,包括存储需求增加、形态相似字符识别和零样本学习困难,同时也为未来的研究提供了实质性机会。据我们所知,MegaHan97K不仅在OCR领域,甚至在更广泛的模式识别领域,也可能是类别数量最多的数据集。该数据集可在 https://github.com/SCUT-DLVCLab/MegaHan97K 获取。